
Hosting My Website: A Step-by-Step Guide

French version:

https://samueldecarnelle.com/projects/hosting-portfolio/hosting-my-portfolio-fr.pdf

1. Setting Up the Website and Virtual Machine

I began by developing my personal portfolio using HTML, CSS, JavaScript, and PHP to
create both static and dynamic content.

To host the site, I used my Proxmox hypervisor to create a virtual machine (VM) running
Ubuntu Server. This VM would serve as the foundation of my self-hosted web server.

2. Domain Name and DNS Configuration

I registered my domain name:
 samueldecarnelle.com

To make the website accessible from anywhere on the internet:

• I contacted my ISP and requested a static public IP address.
• I then configured the DNS A record to point the domain to this static IP, effectively

routing traffic to my home server.

3. Installing Web Server Components

Once the Ubuntu Server VM was ready, I installed the essential components:

sudo apt update
sudo apt install apache2 php mysql-server -y

• Apache2 serves the website content.
• PHP handles the server-side scripting.

• MySQL manages databases.

I also secured MySQL by:

• Disabling remote root login
• Enforcing strong passwords
• Running mysql_secure_installation

4. Securing the Server with UFW (Firewall)

To protect the server from unauthorized access, I set up UFW (Uncomplicated Firewall),
which is easy to manage:

sudo ufw enable
sudo ufw allow OpenSSH
sudo ufw allow 80/tcp
sudo ufw allow 443/tcp
sudo ufw default deny incoming
sudo ufw default allow outgoing
sudo ufw status verbose

This configuration ensures only essential ports (SSH, HTTP, HTTPS) are open.

5. Configuring Port Forwarding on My Router

Since the server is inside my home network (behind NAT), I configured port forwarding on
my router:

• Port 80 → Internal IP of VM (for HTTP)
• Port 443 → Internal IP of VM (for HTTPS)

This allows external requests to reach the internal web server.

6. Enabling HTTPS with Let’s Encrypt (Certbot)

To secure traffic with SSL/TLS, I used Certbot:

sudo apt install certbot python3-certbot-apache -y
sudo certbot --apache

This automatically installed and configured an SSL certificate, enabling secure HTTPS
access to the website.

7. Enhancing SSH Security with Fail2Ban

Fail2Ban protects against brute-force attacks by monitoring logs and banning IPs that
repeatedly fail authentication.

So, I install Fail2Ban:

sudo apt install fail2ban -y
sudo nano

And I add theses configurations inside the /etc/fail2ban/jail.local file:

[sshd]
enabled = true
port = ssh
logpath = /var/log/auth.log
maxretry = 5
bantime = 30m
findtime = 30m

Then I apply the changes using:

sudo systemctl restart fail2ban
sudo systemctl enable fail2ban

Finaly I check the status using:

sudo fail2ban-client status sshd

8. Securing Web Applications with ModSecurity (WAF)

To filter malicious HTTP requests, I installed ModSecurity:

sudo apt install libapache2-mod-security2 -y
sudo a2enmod security2
sudo systemctl restart apache2

Then I change “SecRuleEngine DetectionOnly” to “SecRuleEngine On” inside
my /etc/modsecurity/modsecurity.conf file.

Then restart Apache and test the WAF:

sudo systemctl restart apache2

curl -A "sqlmap" http://localhost

It returns 403 Forbidden so ModSecurity is working.

9. Configuring Nginx as a Reverse Proxy

To enhance performance, I set up Nginx as a reverse proxy for Apache (which now listens
on port 8080):

Step 1: Change Apache Port

sudo nano /etc/apache2/ports.conf

I change the “Listen 80” port to “Listen 8080” inside the

http://localhost/
http://localhost/

I edit the virtual host config file:

sudo nano /etc/apache2/sites-available/000-default.conf

Update <VirtualHost *:80>

to <VirtualHost *:8080>,

Then I restart Apache:

sudo systemctl restart apache2

Step 2: Set Up Nginx

sudo apt install nginx -y

I add theses line to the /etc/nginx/sites-available/portfolio:

server {
 listen 80;
 server_name samueldecarnelle.com;

 location / {
 proxy_pass http://127.0.0.1:8080;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
}

I enable the config:

sudo ln -s /etc/nginx/sites-available/portfolio /etc/nginx/sites-

enabled/
sudo rm /etc/nginx/sites-enabled/default

http://127.0.0.1:8080/

sudo systemctl restart nginx

10. Enforcing HTTPS Redirection in Nginx

To redirect all HTTP traffic to HTTPS, I edit the same Nginx config file:

sudo nano /etc/nginx/sites-available/portfolio

I add above the current server block:

server {
 listen 80;
 server_name samueldecarnelle.com;
 return 301 https://$host$request_uri;
}

Restart Nginx:

sudo systemctl restart nginx

11. Monitoring and Log Checking Commands

Regular log checks are essential for spotting issues and detecting potential threats. Here's
a list of key commands I use to monitor the system:

Apache Logs

sudo tail -f /var/log/apache2/access.log
sudo tail -f /var/log/apache2/error.log

Nginx Logs

sudo tail -f /var/log/nginx/access.log
sudo tail -f /var/log/nginx/error.log

Authentication Logs

sudo tail -f /var/log/auth.log

Fail2Ban Status

sudo fail2ban-client status sshd

12. My Update/Upgrade script to keep my server updated

I wrote a Bash script to auto update and upgrade my webserver, so it’s always updated.

Script:

#!/bin/bash

LOG_FILE="/home/sam/update_upgrade.log"

echo "===" | tee -a $LOG_FILE

echo "Update started at: $(date '+%Y-%m-%d %H:%M:%S')" | tee -a $LOG_FILE

echo "===" | tee -a $LOG_FILE

echo "Starting update and upgrade process..." | tee -a $LOG_FILE

sudo apt update -y | tee -a $LOG_FILE

sudo apt upgrade -y | tee -a $LOG_FILE

sudo apt autoremove -y | tee -a $LOG_FILE

sudo apt autoclean -y | tee -a $LOG_FILE

echo "Update and upgrade completed successfully!" | tee -a $LOG_FILE

echo "==" | tee -a $LOG_FILE

echo "Update complete at: $(date '+%Y-%m-%d %H:%M:%S')" | tee -a $LOG_FILE

echo "==" | tee -a $LOG_FILE

Automation

Then I scheduled it to run daily using Cron.

Conclusion

By carefully configuring Apache, Nginx, UFW, and implementing additional layers of
protection like Fail2Ban and ModSecurity, I’ve successfully built a self-hosted web server
that is both secure and reliable.

My website is now accessible from anywhere using my custom domain, with traffic fully
encrypted via HTTPS. It's actively protected against brute-force attempts and common
web threats, and I can monitor its behavior in real time through system logs.

With this setup in place, my portfolio is not just online, it’s stable, secure, and ready for
real-world use.

	Hosting My Website: A Step-by-Step Guide
	1. Setting Up the Website and Virtual Machine
	2. Domain Name and DNS Configuration
	3. Installing Web Server Components
	4. Securing the Server with UFW (Firewall)
	5. Configuring Port Forwarding on My Router
	6. Enabling HTTPS with Let’s Encrypt (Certbot)
	7. Enhancing SSH Security with Fail2Ban
	8. Securing Web Applications with ModSecurity (WAF)
	9. Configuring Nginx as a Reverse Proxy
	Step 1: Change Apache Port
	Step 2: Set Up Nginx

	10. Enforcing HTTPS Redirection in Nginx
	11. Monitoring and Log Checking Commands
	Apache Logs
	Nginx Logs
	Authentication Logs
	Fail2Ban Status

	12. My Update/Upgrade script to keep my server updated
	Script:
	Automation

	Conclusion

