
Ubuntu Server 22.04 - Hardened System

Table of Contents
Prerequisites

Installation Procedure
Initial Setup

Storage Configuration with Encryption

User and Authentication Setup

Installation and First Boot

Post-Installation Security Configuration
Update System and Install vim

Configure sudo for localadmin

Configure log for sudo

Disable root Account

Secure Mount Options

SSH Server Setup, Configuration and Hardening
Basic Setup

Configure SSH Service

Hardening SSH Configuration
Modify SSH Port

Disable Root Login

Apply Changes

Connect to SSH

RSA Key Authentication
Generate SSH Key Pair on Server

Transfer Private Key to Client

Enable Authorized Keys File

Apply Changes

Two-Factor Authentication (2FA)
Install and Configure Google Authenticator

Set up correct time zone

Configure PAM for SSH 2FA



Configure SSH to Use PAM

Apply Changes

Access Control

Prevent Empty Passwords

Idle Timeout Interval

X11 Forwarding

Agent and TCP Forwarding

Password Authentication

Reloading SSH

Automating Security Updates on Linux Servers
Installing Unattended Upgrades

Configuration

Testing the Setup

Harden network with sysctl settings

Setting Up a Firewall using UFW
Installing UFW

UFW's Default Policy

UFW's Configuration Files

UFW's Rules Files

Basic User-Defined Rules

Allowing and Denying Traffic

Application Profiles

The `Limit` Rule

Access Control by IP or Subnet

Enabling and Checking Status

Deleting Rules

Best Practices

Advanced Firewall Rules

Structure of `before.rules` Files

Use Case

Example of Advanced Rules

Installing and configuring Fail2Ban
Pre-Configuration

Configuration

Email Alerts

Default Action

Individual Jails



Prerequisites

Installation Procedure
Initial Setup

Storage Configuration with Encryption

Starting Fail2ban

Ubuntu Server 22.04 LTS installation media (ISO file)

Virtual machine with at least :
4GB RAM

60GB storage

Network connectivity

Boot Media

Start your VM the Ubuntu Server 22.04 ISO mounted

Configure language and keyboard layout

Set up network settings

Configure proxy if needed

Critical with Encryption

The encryption passphrase cannot be recovered if lost. Document it securely but
separately from the system.

1. At storage configuration, select “Custom storage layout”

2. Create a boot partition :

Select free space → "Add GPT Partition"

Size : 2G

Format : ext4



Partition Size Min 
Size

Mount 
Point

Purpose Security Benefits

/ 13.33% 8 GB / Root filesystem Basis for system

/usr 16.67% 10 GB /usr System applications 
and libraries

Can be mounted read-
only in production

/var 16.67% 10 GB /var Variable data (logs, 
spools, etc.)

Contains logs critical for 
security analysis

/home 33.33% 20 GB /home User home 
directories

User isolation and quota 
managment

swap 13.33% 8 GB N/A Virtual memory Memory management 
support

User and Authentication Setup

Mount : /boot

3. For remaining space :

Select free space → "Add GPT Partition"

Size : Leave blank

Format : Leave unformatted

4. Create a volume group (LVM)” :

Select “Select Create volume group (LVM)”

Set up a name for the LVM volume group

Select the partition used for encryption (not the boot partition)

Select “Create encrypted volume” and create a strong encryption passphrase

5. Create logical volumes :

Partition Rationale

This simplified partition scheme isolates critical system components while allowing more
space for each partition.

6. Review and confirm



Installation and First Boot

Post-Installation Security Configuration
Update System and Install vim

Configure sudo for localadmin

Edit the sudoers file :

Set servers name

Create admin user :

Full name: Admininistrator

Username: localadmin

Password: [strong password]

Skip SSH key import (configured later)

Role-based Administrator

This creates a dedicated system administrator account with proper user attributes.

1. Wait for completion

2. Remove installation media → reboot

3. Enter encryption passphrase when prompted

sudo apt update

sudo apt upgrade -y

sudo apt install vim

Principle of Least Privilege

We're ensuring the localadmin account has appropriate administrative capabilities while
documenting each action.



Add the following line under “User privilege specification”  :

Configure log for sudo
Edit the sudoers file :

Add the following line :

Disable root Account

Edit /etc/passwd  :

Find the root  line and change the shell to /usr/sbin/nologin  :

Edit /etc/shadow  :

Lock the root password by replacing *  by !  :

sudo vim /etc/sudoers

# Grant localadmin full sudo privileges

localadmin ALL=(ALL:ALL) ALL

sudo vim /etc/sudoers

Defaults logfile=/var/log/sudo.log

Critical Security Measure

Disable the root account prevents direct root login, enhancing system security.

sudo vim /etc/passwd

root:x:0:0:root:/root:/usr/sbin/nologin

sudo vim /etc/shadow



Secure Mount Options
Edit /etc/fstab  :

Add security options :

Partition Option Dump Pass Justification

/ (root) defaults,nodev 0 1 • nodev : Device files should 
only exist in /dev

/usr defaults,nodev 0 2 • nodev : No device files 
needed

/var defaults,nodev,nosuid 0 2 • nodev : No device files 
needed  
• nosuid : Prevents privilege 
escalation  
• Allows execution for services

/home defaults,nosuid,nodev,noexec 0 2 • nodev,nosuid,noexec : No 
legitimate need for these 
privileges

/boot defaults,nodev,nosuid,noexec,ro 0 2 • ro : Protects bootloader 
and kernel  
• nodev,nosuid,noexec : No 
legitimate need for these 
privileges

/tmp rw,nodev,nosuid,noexec 0 0 • nodev,nosuid,noexec : 
Maximum restrictions for 
temporary files

/proc defaults,hidepid=2 0 0 • hidepid=2 : Processes of 
other users are invisible

And add the following lines :

root:!:19977:0:99999:7:::

sudo vim /etc/fstab

# hidepid=2 : Processes of other users are invisible

proc /proc proc hidepid=2 0 0



SSH Server: Setup, Configuration and Hardening
Instead of using passwords to log in to your server, SSH keys provide enhanced security. This
system works through a matched pair of keys:

When connecting, your server verifies your identity by checking if your private key matches the
stored public key - no password needed. This prevents unauthorized access even if someone
attempts password-guessing attacks.

Basic Setup

Install Required Packages

First, update your system and install the necessary packages :

Configure SSH Service

Start and enable the SSH service to ensure it runs at system boot :

Hardening SSH Configuration

Modify SSH Port

# nodev,nosuid,noexec : Maximum restrictions for temporary files

tmpfs /tmp tmpfs nosuid,nodev,noexec 0 0

System Protection

These mount options significantly enhance system security by compartmentalizing
privileges and execution permissions across the filesystem hierarchy.

Your server holds the public key

You keep the private key secure on your computer

sudo apt install openssh-server libpam-google-authenticator qrencode

sudo systemctl enable ssh

sudo systemctl start ssh



Changing the default SSH port helps reduce automated attack attempts.

Edit the SSH configuration file :

Find the Port  line and modify it (uncomment if necessary) :

Disable Root Login

Preventing direct root login via SSH is a critical security measure.

In /etc/ssh/sshd_config , find and modify :

Apply Changes

Restart the SSH service to apply all changes :

Connect to SSH

On client machine :

RSA Key Authentication
Generate SSH Key Pair on Server

On your server machine (not the client) generate an RSA key pair :

sudo vim /etc/ssh/sshd_config

Port <port>

Security Note :

Choose a port number between 1024  and 65535  that isn't used by other services.

PermitRootLogin no

sudo systemctl restart ssh

ssh -p <port> <username>@<server-ip>



Then, add the public key to authorized_keys  :

Transfer Private Key to Client

Copy your private key to the client :

Windows (with PowerShell):

Enable Authorized Keys File

In /etc/ssh/sshd_config , find and uncheck :

Apply Changes

Restart the SSH service to apply all changes :

Two-Factor Authentication (2FA)
Install and Configure Google Authenticator

Set up correct time zone

ssh-keygen -t rsa -b 4096

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

scp -P <port> <username>@<server-ip>:~/.ssh/id_rsa ./.ssh

AuthorizedKeysFile .ssh/authorized_keys

sudo systemctl restart ssh

Important :

Do not close your current SSH session until you’ve verified the new configuration works.

sudo timedatectl set-timezone <continent>/<capital>



Configure PAM for SSH 2FA

Configure SSH to Use PAM

Edit /etc/ssh/sshd_config  to enable PAM, challenge-response authentication and keyboard
interactive authentication:

Apply Changes

Restart the SSH service to apply all changes :

1. On the server, run the configuration tool :

google-authenticator

2. A QR code will be displayed in the terminal. Scan it with an authenticator app like Google
Authenticator, Authy, or Microsoft Authenticator.

3. Answer the questions when prompted :
"Do you want authentication tokens to be time-based?"  → y  (Uses time-based
OTP tokens)

"Do you want to disallow multiple uses...?"  → y  (Prevents replay attacks)

"Do you want to increase the original window...?"  → n  (Maintains tight time
synchronization requirements)

"Do you want to enable rate-limiting?"  → y  (Prevents brute force attacks)

4. Save the emergency scratch codes in a secure location.

1. Edit the PAM SSH configuration file :

sudo vim /etc/pam.d/sshd

2. Add the following line at the beginning :

auth required pam_google_authenticator.so

PasswordAuthentication no

KbdInteractiveAuthentication yes

UsePAM yes

ChallengeResponseAuthentication yes

AuthenticationMethods publickey,keyboard-interactive



Access Control

LoginGraceTime  determines the authentication window for users.

MaxAuthTries  controls how many authentication attempts are permitted before blocking a
connection.

MaxSessions  defines how many simultaneous SSH connections a single user can maintain.

These are the recommended values for these three variables:

Prevent Empty Passwords

By default, SSH prevents users with empty passwords from accessing the server, but it's
always good to double-check.

Look for the  PermitEmptyPasswords  variable and make sure it's set to  no  like this:

It's commented out by default. If it's already set to  no , you can leave it as is.

Idle Timeout Interval

Unattended SSH sessions present a significant security vulnerability. When a user maintains an
open terminal without activity, this creates an idle connection that could potentially be exploited.

sudo systemctl restart ssh

Important :

Do not close your current SSH session until you’ve verified the new configuration works.

LoginGraceTime 20

MaxAuthTries 3

MaxSessions 5

These 3 lines are commented by default, make sure to uncomment them!

#PermitEmptyPasswords no



X11 Forwarding

By default, SSH can forward X11 sessions, which can be useful for certain graphical
applications.

Unless necessary, disable X11 forwarding in SSH, as the X11 protocol isn't security-oriented.

Find the   X11Forwarding  variable and set it to  no  like this:

Agent and TCP Forwarding

SSH agent forwarding lets you use your SSH keys to move from one server to another without
keeping keys on the first server.

SSH TCP forwarding, also known as port forwarding, lets you redirect data between your local
and remote machine.

Disable these two features if you don't need them to minimize the attack surface.

Find the   AllowAgentForwarding  and  AllowTcpForwarding  variables and set them to  no  like
this:

You can automatically disconnect inactive sessions by configuring two key
parameters:

ClientAliveInterval  sets how frequently (in seconds) the server sends a verification
signal to the client.
ClientAliveCountMax  establishes how many consecutive verification attempts can fail
before the server terminates the connection.

ClientAliveInterval 60

ClientAliveCountMax 3

X11Forwarding no

Disabling non-essential features like X11 forwarding in SSH can greatly
strengthen your server's security.

AllowAgentForwarding no

AllowTcpForwarding no



Password Authentication

Accessing your server usually involves using a password with SSH. But a more secure method
is SSH key authentication.

This uses two keys: a public key on your server and a private key you keep. You get access
when the server verifies you have the private key.

This method is safer than just using a password, as it ensures only someone with the private
key can enter the server.

Find the  PasswordAuthentication  variable and set its value to  no  like this:

Reloading SSH

After you've made your changes, be sure to reload the SSH service to apply them.

Before that, you should verify the configuration for errors. You can do this using the following
command:

Use this command to restart SSH:

Once the service is reloaded, your changes will be in effect.

Automating Security Updates on Linux Servers

PasswordAuthentication no

By doing this, you ensure that the server can only be accessed using SSH keys.

Always remember to keep your private key secure.

sudo sshd -t

sudo systemctl restart ssh

You can also use the  sudo sshd -T  command to list all variables with their
values, allowing you to check whether the changes have taken effect or not.



Installing Unattended Upgrades

Now, run :

A pop-up window will appear, asking you if you want to automatically download and install
stable updates.

Choose  Yes  and press the  ENTER  key.

Configuration
Open /etc/apt/apt.conf.d/50unattended-upgrades  :

To control if Unattended Upgrades should reboot your server automatically, look for the
line  Unattended-Upgrade::Automatic-Reboot  in the configuration file.

Set this to  "false"  to prevent automatic reboots after updates.

If you prefer automatic reboots, change it to  "true" .

sudo apt install unattended-upgrades

sudo dpkg-reconfigure unattended-upgrades

Changes made

When you do this, Unattended Upgrades changed the value from  0  to  1  in
the  /etc/apt/apt.conf.d/20auto-upgrades  file:

APT::Periodic::Update-Package-Lists "1";

APT::Periodic::Unattended-Upgrade "1";

sudo vim /etc/apt/apt.conf.d/50unattended-upgrades

Information

If you want it to handle non-security updates and update other installed packages, you can
uncomment the  ${distro_id}:${distro_codename}-updates  line.



Additionally, you can schedule a specific time for these reboots.

For this, find the line  Unattended-Upgrade::Automatic-Reboot-Time  and set it to your desired
time, like  "04:00"  for a reboot at 4 AM.

Testing the Setup

Harden network with sysctl settings
Prevent source routing of incoming packets and log malformed IP's.

Open and edit /etc/sysctl.conf  :

Add or uncomment the following lines :

sudo unattended-upgrade -d

sudo vim /etc/sysctl.conf

# Reverse Path Filtering (Prevent Spoofing Attacks)

net.ipv4.conf.all.rp_filter = 1

net.ipv4.conf.default.rp_filter = 1

# Block SYN attacks

net.ipv4.tcp_syncookies = 1

net.ipv4.tcp_max_syn_backlog = 4096

net.ipv4.tcp_synack_retries = 3

# Ignore ICMP redirects

net.ipv4.conf.all.accept_redirects = 0

net.ipv6.conf.all.accept_redirects = 0

net.ipv4.conf.default.accept_redirects = 0

net.ipv6.conf.default.accept_redirects = 0

net.ipv4.conf.all.secure_redirects = 0

net.ipv6.conf.all.accept_redirects = 0

net.ipv4.conf.all.send_redirects = 0

net.ipv4.conf.default.send_redirects = 0

# Disable Source Packet Routing

net.ipv4.conf.all.accept_source_route = 0

net.ipv6.conf.all.accept_source_route = 0



Reload sysctl  :

net.ipv4.conf.default.accept_source_route = 0

net.ipv6.conf.default.accept_source_route = 0

# Disable Packet Forwarding (unless server is functionning as router or VPN)

net.ipv4.ip_forward = 0

net.ipv4.conf.all.forwarding = 0

net.ipv6.conf.all.forwarding = 0

net.ipv4.conf.default.forwarding = 0

net.ipv6.conf.default.forwarding = 0

# Protect TCP Connections (TIME-WAIT State)

net.ipv4.tcp_rfc1337 = 1

# Harden the BPF JIT Compiler

net.core.bpf_jit_harden = 2

kernel.unprivileged_bpf_disabled = 1

# Restrict Core Dumps

kernel.core_pattern = |/bin/false

fs.suid_dumpable = 0

# Disable Magic Keys

kernel.sysrq = 0

# Restrict Access to Kernel Logs

kernel.dmesg_restrict = 1

# Restrict ptrace Access

kernel.yama.ptrace_scope = 3

# Restrict User Namespaces

kernel.unprivileged_userns_clone = 0

# Control Swapping

vm.swappiness = 1

# File Creation Restrictions

fs.protected_regular = 2

fs.protected_fifos = 2

fs.protected_hardlinks = 1

fs.protected_symlinks = 1

# Address Space Layout Randomization (ASLR)

kernel.randomize_va_space = 2



Setting Up a Firewall using UFW
Setting up a firewall is essential for securing your server, and UFW makes this process
straightforward and user-friendly.

Installing UFW:

On Debian-based distribution, like Ubuntu, UFW often comes pre-packaged, but you can check
and install it using theses commands:

UFW's Default Policy

By default, UFW takes a secure approach by blocking all incoming traffic while allowing
outgoing traffic from our server. This means our server can communicate externally, but it
remains inaccessible to others.

Since there is no issue with our server reaching the outside world, there is no need to make any
changes to that aspect.

However, to enable incoming traffic, it’s essential to selectively open only the required ports and
authorize traffic through them.

You can find the default policy defined in the  /etc/default/ufw  file:

sudo sysctl -p

# To check if UFW is installed

sudo ufw status

# If it's already installed disable it

sudo ufw disable

sudo ufw reset

# To install it

sudo apt update && sudo apt install ufw

--You can re-enable it once you have added all the rules and finished

configuring it.



If UFW is enabled, you can also review the default policy using the following command:

You can modify this default behavior of UFW either by directly editing the file or by using these
two commands:

UFW's Configuration Files

You can find the UFW configuration file in /etc/default/ufw  and examined the default policy
of UFW, but there are other settings you might need to know about.

In this file, you will need to change only one option, the 'IPT_SYSCTL file path' :

DEFAULT_INPUT_POLICY="DROP"

DEFAULT_OUTPUT_POLICY="ACCEPT"

As you can see, the default policy for incoming traffic is set to  DROP , while the
default policy for outgoing traffic is set to  ACCEPT .

sudo ufw status verbose

sudo ufw default <policy> incoming

sudo ufw default <policy> outgoing

Replace  <policy>  with either  deny ,  allow  or  reject

deny  corresponds to DROP
allow  corresponds to ACCEPT
reject  corresponds to REJECT.

What are these options? :

Both DROP and REJECT policies prevent traffic from passing through the firewall, but they
differ in their response messages.

With DROP, the traffic is silently discarded without any acknowledgment sent to the
source. It neither forwards the packet nor responds to it.

On the other hand, REJECT sends an error message back to the source, signaling a
connection failure.



To incorporate the default changes that UFW makes, I can simply add these to the end of
the  /etc/sysctl.conf  file:

Now, simply reboot the server for the changes to take effect. There’s no need to enable UFW
for the changes to apply, since we are using the original  sysctl.conf  file.

The last file we need to review is the  /etc/ufw/ufw.conf  file, which contains just two
variables:

# Since we harder directly the linux kernel, change the IPT_SYSCTL file path

IPT_SYSCTL=/etc/sysctl.conf

This is for our configuration only

The only change we make in this file is to the  IPT_SYSCTL  variable. There’s another file
we’ll discuss next, which is  /etc/ufw/sysctl.conf . UFW uses this file to tweak certain
kernel parameters.
However, the original file for changing kernel parameters is  /etc/sysctl.conf .

Why this option? :

While UFW uses its own version for this purpose, we prefer not to do that. When
we harden the Harden network with sysctl settings we make our changes to kernel
parameters directly in the  /etc/sysctl.conf  file.
That's why we need to change that line, if you did not harder the kernel, do not change it.
This way, I avoid dealing with two files and can maintain a clearer overview of the changes
in a single file.

net.ipv4.conf.all.accept_redirects = 0

net.ipv4.conf.default.accept_redirects = 0

net.ipv6.conf.all.accept_redirects = 0

net.ipv6.conf.default.accept_redirects = 0

net.ipv4.icmp_echo_ignore_broadcasts = 1

net.ipv4.icmp_ignore_bogus_error_responses = 1

net.ipv4.icmp_echo_ignore_all = 0

net.ipv4.conf.all.log_martians = 0

net.ipv4.conf.default.log_martians = 0



You can also change the logging level directly from the command line using the following
command:

UFW's Rules Files

In the  /etc/ufw/  directory, you'll find files with the  .rules  extension(some example):

These files control how UFW manages incoming, outgoing, and forwarded traffic. Files with the
number  6  handle IPv6 traffic, while files without it handle IPv4 traffic.

ENABLED=no

LOGLEVEL=low

Why this option? :

The first variable controls whether UFW is enabled or disabled. There's no need to change
it manually, as enabling or disabling UFW from the command line will automatically update
this value.
The second variable controls the log level of UFW. It can be set
to  off ,  low ,  medium ,  high , or  full , depending on how much logging detail you want.

sudo ufw logging <logging_level>

->This will automatically update the value of the `LOGLEVEL` variable.

after6.rules  after.rules  before6.rules  before.rules  user6.rules

user.rules

Important

It's important to note that you should not modify the  user.rules  or  user6.rules  files
directly, as any changes could be overwritten by UFW. Rules added by the user from the
command line are saved to these files, which is why they are called  user.rules  files.
You are free to add custom rules only to the  before.rules  or  after.rules  files.

Important



Basic User-Defined Rules

In the following, we'll cover the basic firewall rules that can be added from the command line.

UFW offers a set of commands for managing firewall rules directly, allowing you to quickly
specify which services or ports are allowed or denied.

While these rules are designed for basic network access control and aren't intended for
advanced use cases, they are perfect for setting up a firewall swiftly and efficiently.

Allowing and Denying Traffic

The core functionality of UFW is to allow or deny network traffic.

To allow or deny traffic for specific ports, you use the  allow  or  deny  rules, respectively.

To allow incoming traffic on port 22 (SSH):

You can also specify a protocol (TCP or UDP):

The order in which UFW processes firewall rules is as
follows:  before.rules  first,  user.rules  next, and  after.rules  last.
Understanding the order in which UFW processes these files and their respective roles is
essential for effectively managing your firewall.

Tips

To review the rules you've added when the firewall is disabled, use the command  sudo
ufw show added , as  sudo ufw status  won’t display the rules in that case.

Remember

Every rule you add from the command line is saved to the  user.rules  file, so feel free to
check it as you add rules to understand how UFW translates the commands into the file.

sudo ufw allow 22

sudo ufw allow 22/tcp



To deny traffic on port 80(HTPP):

If a range of ports is required, such as 5000-6000, use the following:

Similarly, to deny traffic for the same range:

You can also allow or deny traffic based on a service's name instead of specifying a port
number. For example, to allow SSH traffic by using the service name, you can use:

UFW will then automatically determine the correct port (port 22 for SSH) and the associated
protocol (TCP) to apply the rule. This approach simplifies rule management, especially when
dealing with well-known services.

Application Profiles

Applications (software or services installed) can register their profiles with UFW upon
installation, enabling UFW to manage them by name.

To view the available profiles, you can use the following command:

For instance, to allow traffic on port 443 (HTTPS), you can use the following commands:

sudo ufw deny 80

sudo ufw allow 5000:6000/tcp

sudo ufw deny 5000:6000/tcp

sudo ufw allow ssh

Caution

In our case, we have changed the port of our ssh, so this command do not work.

sudo ufw app list

sudo ufw allow "NGINX HTTPS"

sudo ufw allow "Apache Secure"



The Limit  Rule

The  limit  rule in UFW helps protect against brute-force attacks by restricting the number of
connection attempts an IP can make in a short time.

For example, when securing SSH, this rule lets legitimate users connect but temporarily blocks
any IP that makes too many failed attempts.

By default, the rule allows only 6 connections from the same IP within 30 seconds. If the limit is
exceeded, the IP is blocked temporarily, which reduces the risk of brute-force attacks.

To apply this rule for SSH traffic:

Access Control by IP or Subnet

UFW lets you control access based on IP addresses or subnets, which is useful for limiting
access to specific clients or denying access from specific sources.

To allow all traffic from a specific IP to any port:

To allow SSH traffic only from a specific IP:

To allow traffic from a subnet:

Tips

If you’re curious about the origins of these profiles, check
the  /etc/ufw/applications.d/  directory.

sudo ufw limit 22

->This command enables SSH access while protecting the server from excessive

connection attempts.

sudo ufw allow from 192.168.1.100

sudo ufw allow from 192.168.1.100 to any port 22

sudo ufw allow from 192.168.1.0/24



To deny traffic from a specific IP address:

In some cases, you might want to specify not just the IP or subnet but also the protocol (TCP or
UDP).

For example, to allow only TCP traffic from an IP address to port 80, you can specify the
protocol as follows:

By specifying protocols in your access control rules, you gain more control over the traffic flow,
ensuring that only the desired traffic (TCP or UDP) is allowed from specific sources or networks.

Enabling and Checking Status

Before activating our firewall, it’s crucial to review the rules we’ve added so far to prevent any
unexpected behavior.

To enable UFW and apply the rules you’ve configured, use the following command:

Now, you can check the status of UFW and your current ruleset using the  sudo ufw
status  command.

For a more detailed view:

sudo ufw deny from 203.0.113.50

sudo ufw allow from 192.168.1.100 to any port 80 proto tcp

Tips

As I mentioned earlier, if the firewall is disabled, we can't use the  sudo ufw
status  command to view our rules.
Instead, we use the  sudo ufw show added  command. This command will list all the rules
we have added.
Always add the rules, review them, and then proceed to enable the firewall.

sudo ufw enable

sudo ufw status verbose

Tips



Deleting Rules

If, for some reason, you want to delete a rule you have added, you can use the  sudo ufw
delete command followed by the rule itself like this:

There is another easier way to delete rules, but it requires the firewall to be enabled. This
method involves using the rule number.

Once the firewall is enabled, you can use the  sudo ufw status numbered  command to obtain
a list of your rules and their corresponding numbers, like this:

Now, to delete a rule, you can simply use the rule number:

Best Practices

The first step before enabling a firewall is to allow SSH traffic to ensure access to the server. If
you enable the firewall before adding this rule, you risk losing access to your server.

We showed you how to use the  allow  or  limit  rules. Using these rules will permit any IP
address to access port 22, which means our SSH port is open to everyone. This is something
we avoid on a production server.

If you experience any issues, disable UFW using  sudo ufw disable  and review your
rules again.
If you need to reset UFW to its default state (removing all rules), you can use the  sudo
ufw reset  command.

sudo ufw delete deny from 111.111.111.111 to any port 80 proto tcp

sudo ufw delete allow 80

To                         Action      From

--                         ------      ----

[ 1] 22/tcp                ALLOW IN    Anywhere                  

[ 2] 22/tcp (v6)           ALLOW IN    Anywhere (v6)  

sudo ufw delete 1

->This is a much simpler method.



If we have a static IP from which we can access the server, we restrict the SSH port to that IP.
This provides an extra layer of security and reduces the risk of unauthorized access.

Even if you’ve generated an SSH key pair, implemented key authentication, and created a non-
root user, hackers could still attempt to breach your server.

If you have a static IP, use the following command:

Now, the IP specified in the command is the only one that can access the server.

Advanced Firewall Rules

Up until now, we’ve focused on basic user-defined rules that you can easily manage from the
command line.

Now, we’ll introduce the idea of advanced rules, which allow you to control traffic at a deeper
level by configuring UFW's  /etc/ufw/before.rules  files.

These advanced rules let you filter traffic before it reaches your server’s services and before the
firewall applies its standard rules.

Advanced rules are incredibly powerful and can be tailored to specific use cases, offering finer
control over your network's security and performance.

And as we mentioned earlier, all of UFW's rule files primarily use the iptables syntax.

Structure of before.rules  Files

The  before.rules  file begins with a declaration of the  *filter  table and defines several
custom chains:

Tips

Only restrict the SSH port to your IP if it’s static – such as when using a VPN service or if
your ISP has assigned you a static IP.

sudo ufw allow from <YOUR_IP> proto tcp to any port 22

Caution

When you restrict SSH access to a single IP, Fail2Ban becomes irrelevant since there are
no IPs to block. However, I still recommend keeping Fail2ban installed and enabled.



It includes several default rules to handle fundamental network operations and improve security.
These rules cover a variety of scenarios, such as allowing all traffic on loopback interfaces or
dropping invalid packets. They are applied by default once you enable the firewall.
The file ends with the  COMMIT  line, signaling the completion of the rules.

The structure in  before6.rules  for IPv6 is nearly identical to that of  before.rules  for IPv4.

The main difference is that the chains in  before6.rules  all have the number  6  added to their
names, like this:

However, unlike  before.rules ,  before6.rules  does not include a  ufw6-not-local  chain.

It includes some of the default rules that  before.rules  has, but it also contains additional rules
that are applied specifically to IPv6 traffic.

The file also ends with the  COMMIT  line, signaling the completion of the rules.

Use Case

As we mentioned earlier, these files take priority, meaning they are executed first.

This allows us to define rules that will take effect before traffic reaches anything running on the
server and before it travels further through the firewall.

*filter

:ufw-before-input - [0:0]

:ufw-before-output - [0:0]

:ufw-before-forward - [0:0]

:ufw-not-local - [0:0]

Why theses option? :

:ufw-before-input : Processes incoming packets.

:ufw-before-forward : Handles packets forwarded through the server.

:ufw-not-local : Deals with packets that are not addressed to or from the local
system.

*filter

:ufw6-before-input - [0:0]

:ufw6-before-output - [0:0]

:ufw6-before-forward - [0:0]



You can, for example, implement a solution to block SYN flood attacks by rate-limiting the
number of SYN packets allowed through ports 80 and 443, and block IPs exceeding these
limits. This is something that cannot be done using basic user-defined rules from the command
line.

While you can use the  limit  rule for ports 80 and 443, it’s not ideal for a web server since the
limits may not be well-suited to handle the typical traffic patterns of a web server.

Using more advanced rules in  before.rules  allows you to fine-tune the firewall for specific
use cases like this.

Example of Advanced Rules

If you examine the contents of the  before.rules  file, you will notice these two rules:

UFW uses the  conntrack  module (short for connection tracking) to monitor connections and
identify those with  INVALID  connection states. While these rules are effective, we can make

What's SYN flood attacks?:

SYN flood attacks are a common and dangerous type of attack that can overwhelm a
server by sending an excessive number of connection requests, ultimately disrupting
legitimate traffic and potentially causing the server to go down.

-A ufw-before-input -m conntrack --ctstate INVALID -j ufw-logging-deny

-A ufw-before-input -m conntrack --ctstate INVALID -j DROP

Why this option? :

These two rules are designed to log and block any invalid packets, and they are added by
default by UFW to the  ufw-before-input  chain, which filters incoming traffic before it
reaches the server, ensuring that only legitimate connections are allowed.

What is Invalid Packet?:

Hackers use tools to create TCP packets with unusual, weird flag combinations, known
as Invalid Packets, capable of causing significant harm.
UFW blocks these invalid packets by default, but there are still instances where it may
overlook and fail to block.



them even better.

To further enhance the security of our server, we could add two additional rules to log and block
any new connections that don’t have only the SYN flag set.

Add the following two rules below the ones added by default by UFW:

Don't forget to add them to the  before6.rules  file as well:

Now, reload UFW if it is already enabled:

These additional rules further enhance the firewall’s ability to filter out potentially malicious
packets and protect your server from unwanted connection attempts.

Installing and configuring Fail2Ban
Fail2ban is available in Ubuntu’s repositories.

To install it, use this command:

-A ufw-before-input -p tcp -m tcp ! --tcp-flags FIN,SYN,RST,ACK SYN -m

conntrack --ctstate NEW -j ufw-logging-deny

-A ufw-before-input -p tcp -m tcp ! --tcp-flags FIN,SYN,RST,ACK SYN -m

conntrack --ctstate NEW -j DROP

-A ufw6-before-input -p tcp -m tcp ! --tcp-flags FIN,SYN,RST,ACK SYN -m

conntrack --ctstate NEW -j ufw6-logging-deny

-A ufw6-before-input -p tcp -m tcp ! --tcp-flags FIN,SYN,RST,ACK SYN -m

conntrack --ctstate NEW -j DROP

Why this option? :

-The first rule drops any packet that’s considered  INVALID  by the  conntrack  module.
-The second rule blocks TCP packets that are flagged as  NEW  (indicating new connection
attempts) but don’t have the SYN flag set alone.

sudo ufw reload



Pre-Configuration

Fail2ban's configuration files are located in the  /etc/fail2ban/  directory.

If you list the contents of this directory, you will find two important configuration files: 

Fail2Ban recommends creating two local copies of these configuration files for us to modify.

Use the following commands to create a local copy of these two files:

Configuration

Open the  jail.local  file with your preferred editor and examine its settings.

Under the  [DEFAULT]  section, there are some variables that you may want to modify.

The  bantime  variable sets the duration for which an IP will be blocked from accessing the
server after failing to authenticate correctly.

The  maxretry  variable defines the number of authentication attempts an IP is allowed to make
within a time period defined by  findtime  before being blocked.

sudo apt install fail2ban

The  fail2ban.conf  file contains Fail2Ban's global settings, which I don't recommend
modifying.

The  jail.conf  file contains jails, filters with actions.

sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

sudo cp /etc/fail2ban/fail2ban.conf /etc/fail2ban/fail2ban.local

Now you can safely modify Fail2Ban's configuration.

bantime

By default, this is set to 10 minutes.

findtime

maxretry



With the default settings, Fail2Ban will block an IP that unsuccessfully attempts to access the
server more than 5 times within a 10-minute interval.

The  ignoreip  variable contains a list of IP addresses, CIDR masks, or DNS hosts that
Fail2ban won't block.

Email Alerts

If you want to receive email alerts whenever Fail2ban blocks an IP, you should adjust these two
variables inside the  jail.local  file:

The  destemail  variable defines the email address to which the alerts should be sent.

The  sender  variable defines the email address from which the alerts will be sent.

The sender variable should look like this:

Lastly, there is the  mta  variable, which specifies the mail agent that will be used to send the
emails.

Default Action

If you scroll down a bit inside the  jail.local  file, you'll see the  action  variable:

This variable dictates the action Fail2ban should take when blocking an IP address.

#ignoreip = 127.0.0.1/8 ::1

By default, this variable is commented out.

destemail

sender

sender = root@example.com

By default, Fail2ban uses Sendmail as its mail agent. You can change this with
the mta  variable.

action = %(action_)s



The default action is to add a firewall rule that rejects traffic from the IP address, removing it
after the specified  bantime  elapses.

Above the action variable, you'll find various actions you can switch between :

Individual Jails

Now, it is time to examine the service-specific sections, also known as individual jails, such as
the  [sshd]  jail, which protects our server from unauthorized access attempts.

Each of these jails needs to be individually enabled by adding an  enabled = true  line under
the header, along with their other settings.

By default, only the  [sshd]  jail is enabled, and all others are disabled.

Scroll down the  jail.conf  file until you find the  [sshd]  jail, which should look similar to this:

If you've changed the SSH port, ensure to update the value of the  port  variable accordingly.

You can include variables defined in the  [DEFAULT]  section, such as the  bantime ,  maxretry ,
and  findtime  variables, which will only apply to this jail.

If you scroll down further, you'll find other jails that are disabled, such as the  [nginx-http-
auth]  or  [apache-auth]  jails.

Starting Fail2ban

Since the  [sshd]  jail, which protects SSH, is enabled, we can proceed to start and enable the
fail2ban  service if it is disabled, depending on the version of Ubuntu you are using.

Use the following commands to start and enable Fail2ban:

action_mw  sends an email when taking action

action_mwl  sends an email and includes logging

action_cf_mwl  does all of the above, plus sends an update to the Cloudflare API
associated with your account to ban the attacker there as well

Pick the one that suits you the most.

port    = ssh

logpath = %(sshd_log)s

backend = %(sshd_backend)s



You can use the  fail2ban-client  command to check the active jails:

Output:

To view the status and information regarding a specific jail like the  sshd  jail, you can use the
following command:

Output:

sudo systemctl start fail2ban

sudo systemctl enable fail2ban

sudo fail2ban-client status

Status

|- Number of jail: 1

`- Jail list: sshd

sudo fail2ban-client status sshd

Status for the jail: sshd

|- Filter

|  |- Currently failed: 5

|  |- Total failed: 21

|  `- File list: /var/log/auth.log

`- Actions

|- Currently banned: 1

|- Total banned: 2

`- Banned IP list: 218.92.0.29

If you have disabled password authentication for SSH, you may notice zero failed
attempts.

Caution

For Ubuntu-Server 22.4 you need to download r6log to make Fail2Ban work!
Then you need to add " authpriv.* /var/log/auth.log " in the /etc/rsyslog.conf




